

Импульсный вихретоковый зонд (РЕСА™) Выбор и основа - углеродистая сталь

Этот справочный документ предназначен для помощи в выборе подходящего датчика PECA для вашего применения с помощью программного обеспечения Lyft. Вам поможет знание номинальной толщины проверяемого компонента и номинальной толщины изоляции/покрытия. Остальная информация предназначена для того, чтобы помочь вам понять и определить площадь захвата датчика, разрешение сканирования и шаг окружной сетки. Это особенно полезно для количественной оценки производительности решения Lyft в различных условиях.

Диапазон применения зондов РЕСА

Примечание 1: PECA-HR-SM - это специальный зонд, используемый для проверки парши.

Примечание 2: При определении диапазона применения зонда PECA-HR-SM расчетная высота рубца должна рассматриваться как высота подъема

Примечание 3: Наименьшая конфигурация для зонда РЕСА-6СН-МЕD: Труба с наружным диаметром 102 мм (4 дюйма), расписание 40, с изоляцией 25 мм (1 дюйм); общий наружный диаметр

Расчет площади основания зонда РЕСА

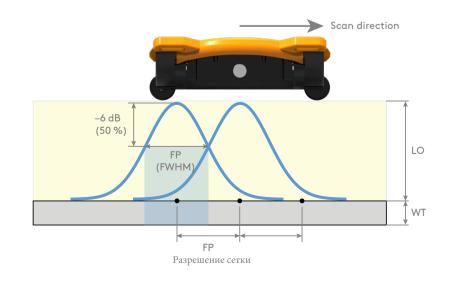
Используйте следующую формулу для определения площади основания (FP) вашего датчика и определения разрешения осевой сетки.

$FP \approx 0.65 \times LO + FP_0$

Где ∠○ поднятие (толщина изоляции, оболочки, покрытия), а ГР - след при нулевом поднятии.

Для зонда, FP_0 :

PECA-HR-SM


PECA-6CH-MED

 $FP_0 = 22 \text{ мм } (0.87 \text{ дюйма})$ $FP_0 = 46 \text{ мм } (1.80 \text{ дюйма})$

			ТОЛЩИНА ИЗОЛЯЦИИ/ПОКРЫТИЯ (ПОДНЯТИЕ)												
		mm	0	6	13	19	25	38	51	64	76	89	102	127	
		in	0.00	0.25	0.50	0.75	1.00	1.50	2.00	2.50	3.00	3.50	4.00	5.00	
ПЕЧАТОК	PECA-HR-SM	mm	22	26	30	34	38	47	55						
		in	0.87	1.03	1.20	1.36	1.52	1.85	2.17						
	PECA-6CH-MED	mm	46	50	54	58	62	71	79	88	95	104	112		
OT		in	1.80	1.96	2.13	2.29	2.45	2.78	3.10	3.43	3.75	4.08	4.40	-	

Отпечаток

Используйте отпечаток зонда для определения оптимального разрешения сетки для правильного обнаружения. FP определяется как полная ширина на (FWHM) половине максимума отклика, обнаруженного зондом. Это обеспечивает 50% перекрытие сигнала между каждой точкой на карте сетки.

Grid-As-U-Go™

Используйте принадлежность Grid-As-U-Go для нанесения линий сетки во время сканирования компонента. Обеспечьте полное покрытие и полностью исключите необходимость подготовки поверхности перед проверкой.

Минимальные выявляемые диаметры дефектов на определенных глубинах

PECA-HR-SM

								ГЛУБИН	А ДЕФЕКТ	A				
			10%		20%		30%		40	1%	50)%	60	%
	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in
Œ	0	0.00	31	1.2	22	0.9	18	0.7	16	0.6	14	0.6	13	0.5
ПОДНЯТИЕ	6	0.24	36	1.4	25	1.0	21	0.8	18	0.7	16	0.6	15	0.6
ПП	12	0.47	39	1.5	28	1.1	23	0.9	20	0.8	18	0.7	16	0.6
11(18	0.71	43	1.7	30	1.2	25	1.0	21	0.8	19	0.8	17	0.7
	24	0.94	46	1.8	32	1.3	26	1.0	23	0.9	21	0.8	19	0.7

Примечание 1: Требуется минимальное разрешение в половину площади отпечатка по оси сканирования.

Примечание 2: Невозможно обнаружить сквозные дефекты (100% потери стенок)

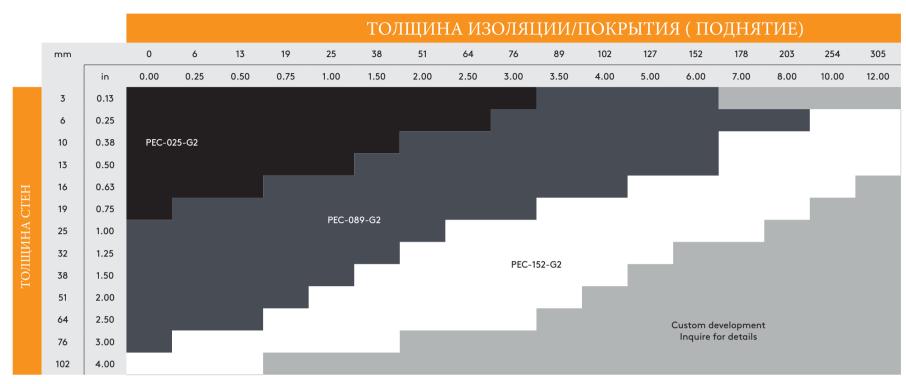
PECA-6CH-MED

								ГЛУБИН	А ДЕФЕКТ	A				
			10	%	20%		30	30% 4		%	50	%	60	%
	mm in mm		in	mm	in	mm	in	mm	in	mm	in	mm	in	
	0	0.0	76	3.0	54	2.1	44	1.7	38	1.5	34	1.3	31	1.2
	12	0.5	92	3.6	65	2.6	53	2.1	46	1.8	41	1.6	38	1.5
田	25	1.0	107	4.2	76	3.0	62	2.4	53	2.1	48	1.9	44	1.7
ПОДНЯТИЕ	38	1.5	120	4.7	85	3.3	69	2.7	60	2.4	54	2.1	49	1.9
ПП	50	2.0	131	5.1	92	3.6	75	3.0	65	2.6	58	2.3	53	2.1
11	64	2.5	142	5.6	101	4.0	82	3.2	71	2.8	64	2.5	58	2.3
	75	3.0	151	5.9	107	4.2	87	3.4	75	3.0	67	2.7	62	2.4
	90	3.5	162	6.4	114	4.5	93	3.7	81	3.2	72	2.8	66	2.6
	102	4.0	170	6.7	120	4.7	98	3.9	85	3.3	76	3.0	69	2.7

Примечание 1: Испытания проводились на 200 различных конфигурациях с использованием различных значений взлета, типов погодных рубашек,

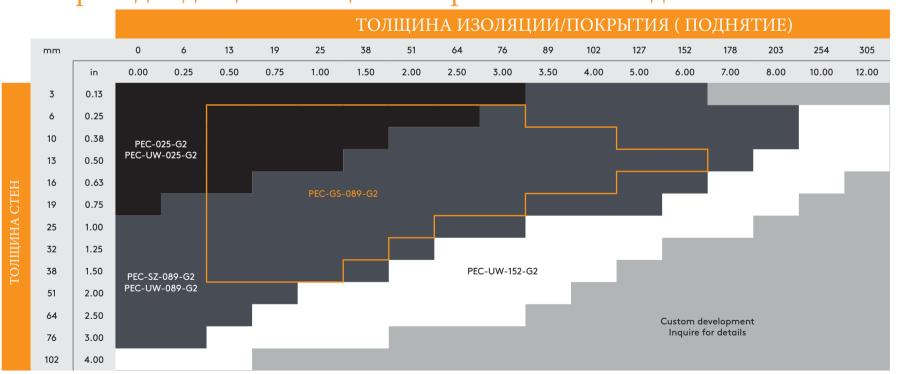
Примечание 2: Требуется использование разрешения с двойным индексом для значений подъема от 0 до 25 мм (1 дюйм).

Примечание 4: Невозможно обнаружить сквозные дефекты отверстия (100% потери стенок).

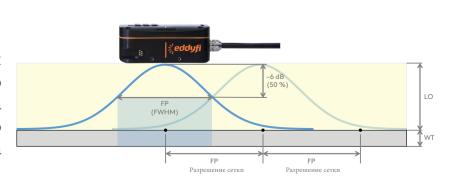


Зонды РЕС второго поколения (G2)

Выбор одноэлементного зонда РЕС и след - углеродистая сталь


Данный справочный документ призван помочь вам выбрать подходящие зонды РЕС для вашего приложения с помощью программного обеспечения Lyft. Зная номинальную толщину проверяемого компонента и номинальную толщину изоляции/покрытия на месте, в приведенных ниже таблицах выбора предлагаются подходящие зонды. Остальная информация предназначена для того, чтобы помочь вам понять и определить площадь захвата выбранных зондов. Это особенно полезно при количественной оценке эффективности решения Lyft в различных условиях.

Выбор подходящего зонда РЕС


Мы рекомендуем использовать PEC-GS-089-G2 в приложениях с погодными рубашками из оцинкованной стали (GS). Если вы используете другие стандартные зонды на метеорологических рубашках GS, добавьте 40 мм (1,5 дюйма) подъема на каждые 0,5 мм (0,020 дюйма) GS.

Выбор подходящего специализированного зонда РЕС

Оипечаток

Отпечаток (FP) зонда используется для определения оптимального разрешения сетки для правильного обнаружения. FP определяется как полная ширина на половине максимума (FWHM) отклика, обнаруженного зондом. Это обеспечивает 50% перекрытие сигнала между каждой точкой на карте сетки.

Используйте следующую формулу для определения площади отпечатка(FP) вашего датчика и определения разрешения осевой сетки.

 $FP \approx 0.65 \times LO + FP_0$

Где $\bot \bigcirc$ - подьем (толщина изоляции, оболочки, покрытия), а $\sqcap \sqcap \bigcirc$ след при нулевой подьеме силе.

Для зонда, FP_{\circ} :

PEC-025-G2/UW

Расчет площади отпечатка зонда РЕС

PEC-089-G2/SZ/UW

PEC-152-G2/UW

FP₀ = 35 мм (1,38 дюйма)

FP₀ = 62 мм (2,44 дюйма)

FP₀ = 100 мм (3,94 дюйма)

			ТОЛЩИНА ИЗОЛЯЦИИ/ПОКРЫТИЯ (ПОДНЯТИЕ)																
		mm	0	6	13	19	25	38	51	64	76	89	102	127	152	178	203	254	305
		in	0.00	0.25	0.50	0.75	1.00	1.50	2.00	2.50	3.00	3.50	4.00	5.00	6.00	7.00	8.00	10.00	12.00
	PEC-025-G2	mm	35	39	43	47	52	60	68	76	85	-	-	-	-	-	-	-	-
	PEC-UW-025-G2	in	1.38	1.54	1.70	1.87	2.03	2.36	2.68	3.00	3.35								
TOK	PEC-089-G2 PEC-SZ-89-G2 PEC-UW-089-G2	mm	62	66	70	74	79	87	95	103	112	120	128	145	161	178	194		
		in	2.44	2.60	2.77	2.93	3.09	3.42	3.74	4.07	4.39	4.72	5.04	5.69	6.34	7.00	7.64		
ПЕЧА	DEC CC 000 C3	mm	-	-	70	74	79	87	95	103	112	120	128	145	161	178	194	-	-
OT	PEC-GS-089-G2	in	-	-	2.77	2.93	3.09	3.42	3.74	4.07	4.39	4.72	5.04	5.69	6.34	7.00	7.64	-	-
	PEC-152-G2	mm	100	104	108	112	117	125	133	141	150	158	166	183	199	216	232	265	298
	PEC-UW-152-G2	in	3.94	4.10	4.26	4.41	4.59	4.91	5.24	5.56	5.89	6.21	6.54	7.19	7.84	8.49	9.14	10.43	11.73

Мы рекомендуем использовать PEC-GS-089-G2 в приложениях с погодными рубашками из оцинкованной стали (GS). Если вы используете другие стандартные зонды на метеорологических рубашках GS, добавьте 40 мм (1,5 дюйма) подъема на каждые 0,5 мм (0,020 дюйма) GS.

Мин. выявляемые диаметры дефектов на определенных глубинах

								ГЛУБИН	А ДЕФЕКТ	A				
			10)%	20	%	30)%	40	1%	50)%	60	%
	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in
	40	1.6	49	1.9	35	1.4	28	1.1	24	1.0	22	0.9	20	0.8
	50	2.0	61	2.4	43	1.7	35	1.4	31	1.2	27	1.1	25	1.0
	60	2.4	73	2.9	52	2.0	42	1.7	37	1.4	33	1.3	30	1.2
	70	2.8	86	3.4	61	2.4	49	1.9	43	1.7	38	1.5	35	1.4
	80	3.1	98	3.9	69	2.7	57	2.2	49	1.9	44	1.7	40	1.6
	90	3.5	110	4.3	78	3.1	64	2.5	55	2.2	49	1.9	45	1.8
×	100	3.9	122	4.8	87	3.4	71	2.8	61	2.4	55	2.2	50	2.0
\TO	110	4.3	135	5.3	95	3.8	78	3.1	67	2.7	60	2.4	55	2.2
ОТПЕЧАТОК	120	4.7	147	5.8	104	4.1	85	3.3	73	2.9	66	2.6	60	2.4
TIL	130	5.1	159	6.3	113	4.4	92	3.6	80	3.1	71	2.8	65	2.6
	140	5.5	171	6.8	121	4.8	99	3.9	86	3.4	77	3.0	70	2.8
	150	5.9	184	7.2	130	5.1	106	4.2	92	3.6	82	3.2	75	3.0
	160	6.3	196	7.7	139	5.5	113	4.5	98	3.9	88	3.5	80	3.2
	170	6.7	208	8.2	147	5.8	120	4.7	104	4.1	93	3.7	85	3.4
	180	7.1	220	8.7	156	6.1	127	5.0	110	4.3	99	3.9	90	3.5
	190	7.5	233	9.2	165	6.5	134	5.3	116	4.6	104	4.1	95	3.7
	200	7.9	245	9.6	173	6.8	141	5.6	122	4.8	110	4.3	100	3.9

Примечание 1: Невозможно обнаружить сквозные дефекты (100% потери в стенках).

Примечание 2: Требуется минимальное разрешение, равное половине площади выбранного датчика.

Примечание 3: Вышеуказанные размеры дефектов были определены с использованием отверстий с плоским дном.

Чугун

Выбор зонда РЕС и его размеры

Данный справочный документ предназначен для контроля чугуна с помощью технологии РЕС. Он разработан для того, чтобы помочь вам выбрать подходящие зонды РЕС для вашего приложения с помощью программного обеспечения Lyft. Приведенные ниже таблицы выбора предлагают подходящие датчики на основе известной номинальной толщины проверяемого компонента и номинальной толщины изоляции/покрытия.

Остальная информация предназначена для того, чтобы помочь вам понять и определить площадь захвата выбранных зондов. Это особенно полезно при количественной оценке эффективности решения Lyft в различных условиях.

Выбор подходящего одноэлементного зонда РЕС

Выбор подходящего специализированного зонда РЕС

Диапазон применения зондов РЕСА

Eddyfi Technologies

Расчет площади отпечатка зонда РЕС

Размеры отпечатка для чугуна такие же, как и для углеродистой стали. Используйте следующую формулу для определения площади опоры (FP) вашего зонда.

$$FP \approx 0.65 \times LO + FP_0$$

Где LO - подьем (толщина изоляции, оболочки, покрытия), а FP0 след при нулевой подьеме силе.

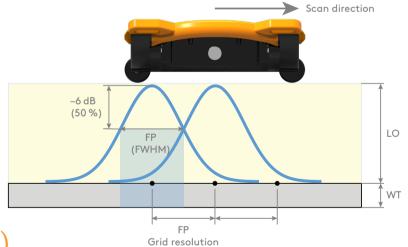
Для каждого зонда FP_{\circ} :

PECA-6CH-MED P

PEC-025-G2/UW

PEC-089-G2/SZ/UW

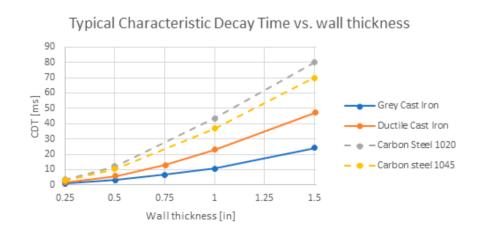
FP₀ = 46 мм (1,80 дюйма)


FP₀ = 35 мм (1,38 дюйма)

FP₀ = 62 мм (2,44 дюйма)

					ТОЛЩИНА	изоляции	/ПОКРЫТИЯ	иткндоп) н	1E)
		mm	0	6	13	19	25	38	51
		in	0.00	0.25	0.50	0.75	1.00	1.50	2.00
	PEC-025-G2 PEC-UW-025-G2	mm	35	39	43	47	52	60	68
TOK		in	1.38	1.54	1.70	1.87	2.03	2.36	2.68
ЧАТ	PEC-089-G2	mm	62	66	70	74	79	87	95
IIE	PEC-UW-089-G2	in	2.44	2.60	2.77	2.93	3.09	3.42	3.74
OT	DECA (CIL MED	mm	46	50	54	58	62	70	79
	PECA-6CH-MED	in	1.8	1.96	2.13	2.28	2.45	2.78	3.10

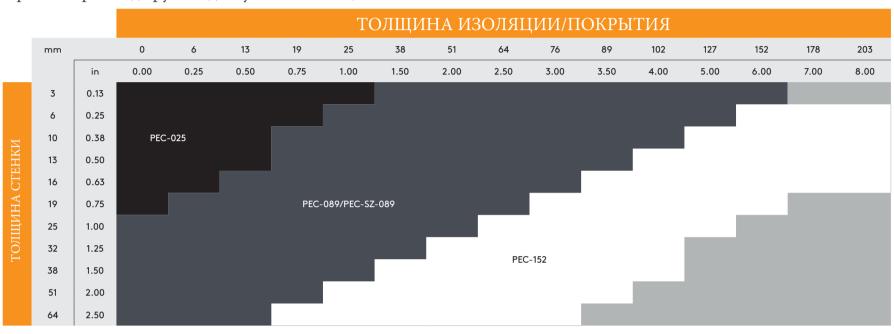
Отпечаток


Используйте отпечаток зонда для определения оптимального разрешения сетки для правильного обнаружения. FP определяется как полная ширина на половине максимума (FWHM) отклика, обнаруженного зондом. Это обеспечивает 50% перекрытие сигнала между каждой точкой на карте сетки.

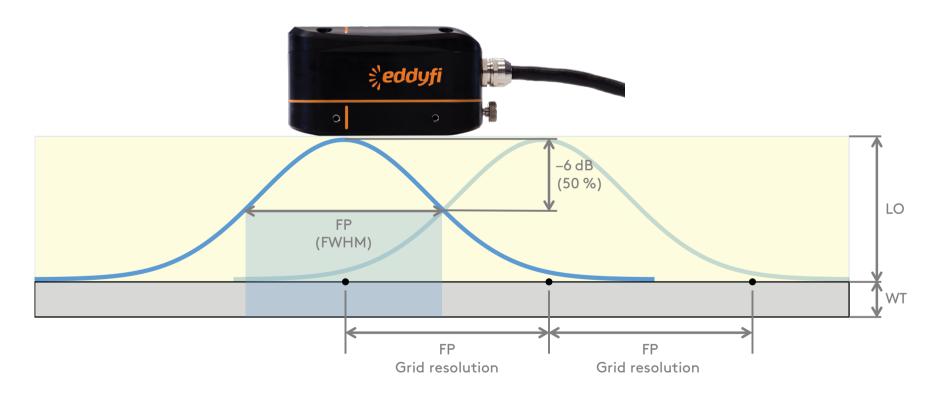
Характерное время распада (CDT)

При выборе типа чугуна во время настройки с помощью программного обеспечения Lyft поддерживаются как серый, так и ковкий чугун. Эти материалы обычно обладают большим сопротивлением, чем углеродистая сталь, что приводит к гораздо более быстрому отклику РЕС и меньшему характерному времени распада (CDT). Типичные CDT серого и ковкого чугунов сравниваются с углеродистой сталью на приведенном здесь графике:

Вам может понадобиться вручную отрегулировать CDT перед запуском процедур SmartPULSE или PEC Autoset, если чугун значительно отклоняется от типичного поведения.


Зонды РЕС первого поколения (G1) Выбор одноэлементного зонда РЕС и отпечаток - углеродистая сталь

Этот справочный документ предназначен для помощи в выборе датчика РЕС, который лучше всего подходит для вашего применения с программным обеспечением Lyft. В приведенной ниже таблице выбора предлагаются подходящие датчики на основе известной номинальной толщины проверяемого компонента и номинальной толщины изоляции/покрытия на месте.


Оставшаяся информация помогает понять и определить площадь выбранного датчика, область усреднения и краевой эффект. Это особенно полезно для количественной оценки эффективности решения Lyft в различных условиях.

Выбор подходящего зонда РЕС

При выборе зонда руководствуйтесь таблицей.

Отпечаток

Расчет площади отпечатка зонда РЕС

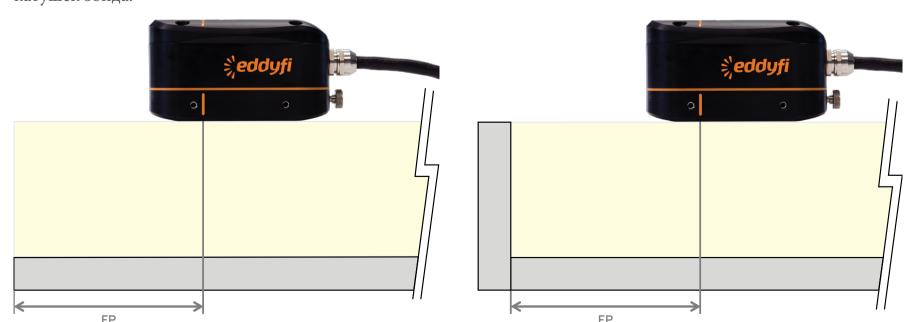
Используйте следующую формулу для определения площади опоры (FP) вашего датчика.

 $FP \approx 0.65 \times LO + FP_0$

Где LO - подьем (толщина изоляции, оболочки, покрытия), а FP0 след при нулевой подьеме силе.

Для каждого зонда, FP_0

	Insulation/Coating Thickness (Li	FTOFF)
FP ₀ = 35 мм (1,38 дюйма)	FP ₀ = 62 мм (2,44 дюйма)	FP ₀ = 100 мм (3,94 дюйма
PEC-025	PEC-089/PEC-SZ-089	PEC-152


				Insulation/Coating Thickness (Liftoff)													
		mm	0	6	13	19	25	38	51	64	76	89	102	127	152	178	203
		in	0.00	0.25	0.50	0.75	1.00	1.50	2.00	2.50	3.00	3.50	4.00	5.00	6.00	7.00	8.00
	PEC-025	mm	35	39	43	47	52										
OK		in	1.38	1.54	1.70	1.87	2.03										
HAT	PEC-089	mm	62	66	70	74	79	87	95	103	112	120	128	145	161		
ОТПЕЧАТОК	PEC-SZ-89	in	2.44	2.60	2.77	2.93	3.09	3.42	3.74	4.07	4.39	4.72	5.04	5.69	6.34		
O	PEC-152	mm	100	104	108	112	117	125	133	141	150	158	166	183	199	216	232
		in	3.94	4.10	4.26	4.41	4.59	4.91	5.24	5.56	5.89	6.21	6.54	7.19	7.84	8.49	9.14

Область усреднения

Это поверхность, видимая датчиком на детали. Толицина стенки, определенная Lyft, - это средняя толицина стенки в зоне усреднения. В результате корровионные дефекты, размер которых меньше площади усреднения, недооцениваются. Диаметр зоны усреднения в 1,8 раза больше площади зонда ($AvgA\Phi = 1.8 \times FP$).

Эффект кромки

Эффект кромки влияет на измерения РЕС, когда зонд приближается к геометрическим изменениям, таким как сопла, фланцы или конец конструкции. Измерения начинают отличаться на расстоянии одного FP от центра катушек зонда.

